A Deep Model for Super-resolution Enhancement from a Single Image

نویسندگان

  • K. Kiani Electrical and Computer Engineering Faculty, Semnan University, Semnan, Iran.
  • N. Majidi Electrical and Computer Engineering Faculty, Semnan University, Semnan, Iran.
  • R. Rastgoo Electrical and Computer Engineering Faculty, Semnan University, Semnan, Iran.
چکیده مقاله:

This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks simultaneously. We use the residual layers in our model to make repetitive layers, increase the depth of the model, and make an end-to-end model. Furthermore, we employed a deep network in up-sampling step instead of bicubic interpolation method used in most of the previous works. Since the image resolution plays an important role to obtain rich information from the medical images and helps for accurate and faster diagnosis of the ailment, we use the medical images for resolution enhancement. Our model is capable of reconstructing a high-resolution image from low-resolution one in both medical and general images. Evaluation results on TSA and TZDE datasets, including MRI images, and Set5, Set14, B100, and Urban100 datasets, including general images, demonstrate that our model outperforms state-of-the-art alternatives in both areas of medical and general super-resolution enhancement from a single input image.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single Image Super-Resolution

Image super-resolution is the task of obtaining a high-resolution (HR) image of a scene given low-resolution (LR) image(s) of the scene. In this project, we have focused on the task of super-resolution given a single LR image, which is usually the case. There exist many techniques in literature addressing this task, and we have considered two techniques having the essence of [1] and [2]. In fir...

متن کامل

Single Image Super Resolution: a Comparative Study

The majority of applications requiring high resolution images to derive and analyze data accurately and easily. Image super resolution is playing an effective role in those applications. Image super resolution is the process of producing high resolution image from low resolution image. In this paper, we study various image super resolution techniques with respect to the quality of results and p...

متن کامل

Single-Image Super-Resolution: A Benchmark

Single-image super-resolution is of great importance for vision applications, and numerous algorithms have been proposed in recent years. Despite the demonstrated success, these results are often generated based on different assumptions using different datasets and metrics. In this paper, we present a systematic benchmark evaluation for state-of-the-art single-image super-resolution algorithms....

متن کامل

Deep Network Cascade for Image Super-resolution

In this paper, we propose a new model called deep network cascade (DNC) to gradually upscale low-resolution images layer by layer, each layer with a small scale factor. DNC is a cascade of multiple stacked collaborative local auto-encoders. In each layer of the cascade, non-local self-similarity search is first performed to enhance high-frequency texture details of the partitioned patches in th...

متن کامل

Learning a Deep Convolutional Network for Image Super-Resolution

We propose a deep learning method for single image superresolution (SR). Our method directly learns an end-to-end mapping between the low/high-resolution images. The mapping is represented as a deep convolutional neural network (CNN) [15] that takes the lowresolution image as the input and outputs the high-resolution one. We further show that traditional sparse-coding-based SR methods can also ...

متن کامل

Fast Single Image Super-Resolution

This paper addresses the problem of single image super-resolution (SR), which consists of recovering a high resolution image from its blurred, decimated and noisy version. The existing algorithms for single image SR use different strategies to handle the decimation and blurring operators. In addition to the traditional first-order gradient methods, recent techniques investigate splitting-based ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 8  شماره 4

صفحات  451- 460

تاریخ انتشار 2020-11-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023